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ABSTRACT

Radar is considered as a means of producing a map in two
coordinates (x and y) of a dense distribution of scatterers.
It is assumed that a complex unit-scatterer return h(t;x,y)
and a complex scatterer-density function *(x,y) can be de-
fined such that; (a) h(t;x,y) depends only on the radar;
(b) *(xy) depends only on the scatterer distribution; (c)
the complex video representation of the echo signal is

S(t) = _Oi(x,y) h(t;x,y) dxdy; and (d) an x-y display of

*(xy) approximates, in some practically useful way, a map
of the distribution of scattering objects in the x-y plane.
The above conditions are satisfied if x and y are taken to
be time delay and Doppler frequency. Determination of *(x,y)
is assumed to be the objective of the radar.

A series expansion of h(t;x,y) is obtained in terms of a
set of functions, On(t), which are orthonormal over the re-
ceiver operating time interval T, and a set of functions
Yn(x,y), which are orthonormal over a finite region R of
the x-y plane. If the only a priori information is that
*(x,y) is zero outside the region R, then, even in the absence
of noise, only the component of 4(x,y) which is representable
as a linear combination of the Bn(x,y) can be deduced from
the radar return.

A smoothed form *s(x,y) of *(x,y) is defined as the convolu-
tion of O(x,y) with a spike-like smoothing function. In the
presence of additive, stationary, white, Gaussian noise, a
maximum likelihood estimate of *s(x,y) can be obtained pro-
vided the Gn(x,y) are sufficiently complete to permit expand-
ing the desired smoothing function in terms of the en(Xy).
The appropriate receiver is not, in general, a matched filter.
The cross section of the smoothing-function spike must be
chosen to compromise between loss of detail in *s(xy) and
reduction of the signal-to-noise ratio.

In time delay and Doppler-frequency coordinates, let 4T(xy)
be the compobent of *(xy) that contributes to the radar
return during the receiver operating time interval T. If
it is known a priori that *T(X,27k/T) is zero for x outside
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an interval D and for 27rk/T outside an interval B, and if
the transmitted waveform is periodic with P = D, then, in
the absence of noise, *T(x,2Trk/T) cnn be deduced exactly
from the received waveform if, and only if, BD < 27T and
all harmonics are present in the transmitted waveform.

If the smoothing along the time-delay axis is specified by
a spike-like function a(x) for all Doppler frequencies, and
if a(x) is a realizable autocorrelation function, then, for
a given transmitted average power, the output signal-to-noise
ratio is a maximum when the time autocorrelation function of
the transmitted waveform is a periodic string of pulses of
the form of a(x). The receiver weighting function appropriate
for such a waveform resembles closely the matched filter.
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V
CHAPTER I

INTRODUCTION

A. DELINEATION OF THE AREA OF RESEARCH

The purpose of this research is the development of a radar

theory applicable to dense scatterer distributions. The

scatterer distribution must be representable, in the sense

described in Chap. II, Sect. A, by a scatterer-density function

of two coordinates x and y. These could be time delay and

Doppler frequency, or any other coordinate pair satisfying the

conditions specified in Chap. II. Whether or not other such

coordinate pairs exist is not considered in this report.

B. CRITIQUE OF EXISTING MULTIPLE-TARGET RADAR THEORY

A fairly complete theory of detection and coordinate estima-

tion is available for the case of a single point scattererI.

However, in most radar applications of interest, there is more

than one scatterer present at any one time; and often the problem

of resolving or separating any one scatterer echo from other

scatterer echoes with arbitrary coordinates becomes the over-

riding consideration in radar design. Resolvability (that is,

the degree to which scatterer echoes can be separated), in two

*Superscripts refer to numbered items in the Bibliography.

1
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coordinates, such as time delay and Doppler frequency, is an

important problem in multiple-scatterer theory. In experiment-

ing with different transmitted waveforms, it becomes apparent

that good resolvability between some targets may be achieved at

the expense of resolvability among other targets. Often, for a

given transmitted waveform, the resolvability may be improved at

the expense of detectability. In spite of these observations,

it has, so far, been impossible to obtain a set of necessary and

sufficient realizability conditions or limiting relationships

which prevent the simultaneous achievement of arbitrary resolva-

bility and detectability for a general class of target distribu-

tions. Furthermore, a systematic procedure for the synthesis of

the receiver and the transmitted waveform is lacking.

The most useful guide in choosing the transmitted waveform

has been Woodward's uncertainty function. 1,2 Siebert7 has

studied the properties of this function to assist the synthesis

of the transmitted waveform by obtaining a test of the realiza-

bility of any particular form of the uncertainty function.

Several necessary conditions were established, but the lack of

a useful sufficient condition is still a major obstacle in the

synthesis of the transmitted waveform.

C. THE LIMITING FORM OF THE MULTIPLE-TARGET PROBLEM

It appears appropriate, for certain radar applications, to

consider dense-scatterer distributions containing scatterers at

I all points throughout a region of the plane of the coordinates

So*1 f h ordnte



x and y in which the distribution is to be mapped. Under these

conditions the detection of any one scatterer and its resolvabi-

lity from all the other scatterers are not usually of direct

interest to the radar user. The user is primarily interested

in characteristic patterns formed by clusters or assemblies of

scatterers and their over-all distribution in the x-y plane.

It is therefore assumed that the purpose of a radar system in

this application is to obtain an x-y display of the distribution

of scatterers. Consequently, the appropriate measure of perform-

ance is the fidelity with which such a display reproduces the

actual scatterer distribution.

In applying existing multiple-target radar theory to this

dense-scatterer problem, the following difficulties are

encountered:

1. The theory is incomplete; it lacks limiting

relationships, realizability conditions, and
a systematic synthesis procedure.

2. The measures of performance, that is detect-

ability and resolvability, are not directly

related to the interests of the radar user.

As a result, a new approach to the dense-scatterer problem

has been undertaken.

D. THE SCOPE OF THE PROPOSED THEORY

An appropriate scatterer-density model representing the

physical scatterer distribution is developed. The determination

of this model can then be regarded as the objective of the radar

system in dense-scatterer applications. Limiting relations
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showing the extent to which the scatterer-density model may be

deduced from the radar return are obtained for the noise-free

and the noisy cases. A systematic synthesis procedure for the

appropriate receiver is developed. Also, the synthesis of trans-

mitted waveforms is carried out for the case in which x is time

delay and y is Doppler frequency.

The proposed theory is partinent to applications involving

dense-scatterer distributions. The single-scatterer case has

been thoroughly covered by existing radar theory. Between the

single-scatterer and the dense-scatterer distributions, there

lies a large intermediate class of distributions which may be

approximated by a finite number of discrete point scatterers,

whose coordinates are not known a priori. With respect to these

distributions, the dense-scatterer theory, just as the single-

scatterer theory, may prove useful as a limiting form of the

actual problem.



CHAPTER II

GENRAL THEORY

A. THE RADAR MODEL

The bandwidths of all pertinent radar waveforms (the

transmitted waveform, the return from a point scatterer, and the

return from an arbitrary distribution of scatterers) are assumed

to be less than twice the carrier frequency so that each waveform

may be represented as a complex video signal with a one-one

relation obtaining between waveforms and their representations.

Such a representation does not contain the carrier; only the

amplitude and phase modulation are preserved. Suitable linear

combinations of the real and imaginary parts of the complex

video yield in-phase and quadrature components of actual video

signals encountered in coherent radar.

The complex video waveform representing the return from a

point scatterer is designated by

Return from a point scatterer 'Vh(t;x,y) (2-1)

where h(t;x,y) depends on the radar characteristics

(transmitted waveform, antenna pattern, and antenna scan), t is

-time, x and y are the coordinates of the scatterer, and Ik is a

complex amplitude representing the magnitude and phas, of the

return.
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The return from a number of point scatterers so located

that the return from each is independent of the presence of the

others is given by a linear superposition of returns of the

form of Sq. 2-1; namely,

Return from a set of h(t;x (2-2)
non-interferring point scatterersJ- L;k ,yk) -

k

whereT k, Xk, and Yk are the complex amplitude and the coordiý-

nates of kth scatterer. For dense-scatterer distributions

containing scatterers at all points of the x-y plane, the analog

of Sq. 2-2 is:

S(t) = ff %(x,y) h(t;x,y) dx dy (2-3)
-00

where s(t) is the radar return and Y(x.,y) is the density per

unit area of the x-y plane, of the sources of backscatter at

a point (xy). Discrete point scatterers may be accounted for

by two-dimensional impulses inN+(x,y) at the appropriate point's

in the x-y plane. Consequently, Eqs. 2-1 and 2-2 may be con-

sidered special cases of Eq. 2-3. Thus for noninteracting

scatterers, a display of Ij'(x,y)j is a map of the distribution

of physical objects in x-y coordinates--nonzero and zero values

of I'V(xy)l indicate, respectively, the presence or absence of

objects at the corresponding regions of the x-y plane.

Configurations of objects of'practical interest often

consist of interacting scatterers which, among other things, may

give rise to destructive interference and fading of the target,

the appearance of false target~s due to multiple reflection, and

loss of targets due to shadowing by objects at closer range.
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Despite this, it may still be possible that in an appropriate;

set of coordinates, Eq. 2-3 is valid for a function h(t;x,y)

determined by the radar and a function W(xy) that depends on

the scattering objects and that, under the proper conditions

(such as those discussed in Sect. A of Chap. III), can be made

Independent of the radar. It is shown in Sect. A of Chap.

III that time delay and Doppler frequency are an appropriate set

of coordinates which meet the above requirements.

In consequence, we consider henceforth some coordinate pair

xy for which we are able to define a scatterer-density function

having the following important properties:

1. 'V(x,y) is independent of the radar

2. the received waveform for a radar charaoterized

by any function h(t;x,y) is given by Eq. 2-3

3-. Y(x,y) characterizes a class of actual scatterer

configurations having members which are indis-

tinguishable by a radar characterized by any

h(t;x,y) and using any receiver processing

be IW(x,y)l may sometimes be interpreted, at least

approximately, as a distribution of objects

throughout the x-y plane

In view of the above properties and because, given *(x,y), [L*(xy)lI is available for whatever interpretation as a map of ohe distribu-

tion of objects in the x-y plane may be possible, the desired

radar output is assumed in this report to be an x-y display that

reproduces'V(x,y) within some prescribed fidelity criterion.

We have, in effect, subdivided the dense-scatterer problem

into three parts:
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I. the determination of a suitable pair of coor-

dinates and a corresponding function *(x,y)

2. *the interpretation ofIP(x,y)I and its rela-

tionship to the distribution of objects

3. the establishment of conditions under which

the desired radar output is achievable and

the determination of the appropriate trans-

mitted waveform, antenna pattern and scan,

and receiver processing functions for obtain-

ing the desired output.

Henceforth, aside from Sect. A in Chap. III, our only concern

will be part 3 of the dense-scatterer problem.

B. PERFORMiANCE LIMITATIONS IN THE ABSENCE OF NOISE

In the following we shall determine the extent to which the

scatterer density can be deduced from the knowledge of the noise-

free received and transmitted waveforms if the only available

a priori information is that V(x,y) vanishes outside some finite

region R of the x-y plane. In other words, we shall inquire

into the possibility of solving for V(x,y) from Eq. 2-3 when

s(t) and the transmitted waveform, and consequently h(t;x,y),

are known and the region of integration is restricted to a

finite region R.

First, two basic sets of orthonormal functions, one in t

and one in x and y, will be obtained. The radar return s(t),

the return from a point scatterer h(t;x,y), and the scatterer

density'V(x,y) will then be represented in terms of the two

basic sots. With the help of these representations, the
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solution to the problem posed above will become obvious.

Furthermore, the two basic sets of orthonormal functions will

prove very useful in obtaining ultimate performance limitations

in the presence of noise and in developing a synthesis procedure.

We begin by defining a function K(t,t') as follows:

K(tt') h(t;x,y) h*(tl;x,y) dx dy (2-4)

R

where the asterisk denotes the complex conjugate. It is assumed

that Ih(t;x,y)I is bounded and that the region R is finite. We

note that

K(t,tt) = K*(tt,t)

and that, as a consequence of the above assumptions,

2

f fIK~t,t'lI dt t
TT

is finite for any finite T. Thus, K(t,t') is an L2 (integrable

square), Hermitian kernel.8'9 The corresponding characteristic

functions n(t) and characteristic values An satisfy the follow-

Ing equations:*

fK(t,' •nlt) ') d' = An •nit) n-1,2,3,...; t inside T

T (2-5)

r i if m=n

fcp(t) %*(t) dt - (2-6)
T 0o if mon

An 0 n=l,2,3-...

*Most treatments of integral equations consider only real

symmetric kernels except that the statement is made that the
results can be readily extended to Hermitian kernels as is done
hero.
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The interval of integration T is the observation interval which

is a fixed period of time for which the received waveform s(t)

(see Eq. 2-3) is available at the radar receiver.

Knowing the characteristic functions ;),(t), we generate a

set of functions 8m (x,y) as follows:

bh*(t';x,y) Wm(t') dt' p m Bm(x'y) (2-7)
T

where the Pm are normalizing constants such that

2 6

fflem(x y)I dx dy -1 (2-8)

R

Since the normalization can always be accomplished with a posi-

tive real constant, we shall take the p to be positive and real.
Ln

As a result of Eq. 2-7, we have

f h(t;x,y) Wn*(t) dt p n 8n*(x.y) (2-9)

T

Multiplying Eq. 2-7 by Eq. 2-9, integrating with respect to x

and y, and interchanging the order of integration on the left-

hand side, we obtain

f fm~(t t)[ffh(t;x~y)h*(tF;xý,y)dxdY CPn*(t)dtdtt

TT •R

mn ff a(Xy) en*(x,y)dxdy•m n emffy Mn

R 1(2-10);

Substituting Eq. 2-4 for the bracketed term on the left -hand

side and making use of Eqs. 2-5, 2-6, and 2-8, we find that

r.1 if m= n

fj 8(xY) B n*(x,y) dxd -. 0 . (if"M)

R



and that

2 (2-12)

Equation 2-12 indicates that K(t,t' ) is a non-negative kernel

(recall that the Pn's are, positive and real), which fact can

also be ascertained by noting that

ff lf(t;x,y) u(t) dt2 dx dy b 0

R T

which with the help of sq. 2-4 becomes

ffu(t) K(t,t') u*(tI) dt dt' I 0 (2-12a)

TT

for any u(t).

It is useful to note that the functions 9t) can be gene-

rated from the functions en(xy) by first multiplying both sides

of Eq. 2-7 by h(t;x,y), integrating with respect to x and y, and

interchanging the order of integration, so that

Pn ffh(t;xY)en(xy)dxdy =f [ fh(t;x'y)h*(tI;x.y)dxdy]gn~t')dt'

R T Y

Next, by substituting K(t,t') as given by Eq. 2-4 for the brack-

eted term on the right-hand side and by using Eqs. 2-3 and 2-12,

we obtain

fh(t;xly) On (x,y) dx dy = n Cnt) (2-13)

In order to obtain a representation for h(t;x,y) in terms

of the qcn(t) and 6,(x,y), consider the following expression
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n2

C n fffjh(t;x,y) - Pckcp(t) Ok*(x,.y) dxdydt (2-14)

T R k=1

With the help of Eqs. 2-4, 2-13, and 2-12, we find that

n

T k=1

It will be assumed that the radar return from a point scatterer,

that is, h(t;x,y), is a continuous function of time uniformly in

x and y over R--an assumption which, from a physical standpoint,

does not restrict the generality of the analysis. Consequently,

K(t,t') as defined by Eq. 2-4 must also be continuous. Further-

more, since K(t,t') is non-negative (see Eq. 2-12a), we can use

a corollary of Mercer's theorem (see reference 9, p. 127), which

states

00 Z Ak K~t,t) dt ( -)
k1 fk=l T

T1herefore, as n approaches infinity, Eq. 2-15 becomes

Aim C = 0n
n -- * on

which when applied to Eq. 2-14 yields

n

timo fff Ih(t;x~y) ~ I~ cpk(t) Ok*( x y)i dx dydt -0
T R k=1

Thus, we obtain the representation
n

h(t;x,y) = £.i.m. ( 2,•(t) Bk*(x,y) (2-17)
k=l

which is valid regardless of the completeness or incompleteness

of the sets cpk(t) and ek(x'y).
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Next, we seek the appropriate series representations for

the radar return s(t). Multiplying both sides of Eq. 2-3 by

ck*(t) integrating over T, interchanging the order of integra-

tion on the right-hand side, and using Eq. 2-9, we find that

4k Pk ff*(xy) k'*(x,y) dx dy (2-18)

R

where

Sk- fs(t) pk*(t) dt (2-19)

T

Multiplying both sides of Eq. 2-18 by q)(t) and summing from

kal to k=n, we obtain

n n

ZI k Yk(t) - T. k cpk(t) ff 4XX 'y) ek*(x,y) dx dy (2-20)
k=1 k=1 R

Subtracting Eq. 2-20 from Eq. 2-3 and re-arranging terms gives

nn

'S~t ~(t) 9 ff [h(t X.Y) *1 kktOkxY]I(x,y)dxdy

k=1 R k=1

By applying the Schwarz inequality, we obtain
n

k1

ffjh(t;Xy)t n 12 dxd, ffI*$zy)j dxdy

R k=1 R (2-21)

With the help of Eqs. 2-4, 2-12, and 2-13, the first factor on

the right-hand side may be rewritten so that

n 2 n 2

k-1 k-l R (2s-21a )



14

Since K(t,t') is continuous and non-negative (see discussion

below Eq. 2-15), we may, in proceeding to the limit as n

approaches infinity, apply Mercer's theorem to the bracketed

expression in Eq. 2-21a. Thus, assuming that 4t(x,y) is an

integrable-square function* over the region R, we obtain

Aim. J3(t) -> k (k(t)J 0

k-l

so that

s(t) ZSk 'pk(t) .(2-21b)

k=l

converges almost uniformly. 9  Note that Eq. 2-21b is valid

regardless of the completeness or incompleteness of the (Pk(t).

We are now in a position to inquire into the possibility

of solving for *(x,y) from Eq. 2-3. For this purpose we define

the coefficients 4 k as follows:

*k = ff 41 (x.y) 8kl(x-,y) dx dy (2-22)

R

where we have used Eq. 2-18. From the theory of orthonormal
9J

expansions9, it is known that *(x,y) may be decomposed into two

orthogonal components as follows:

4'(xy) " *[i(x,y) + (J. Xy) (2-23)

-such that

*Such a restriction excludes point targets which produce impulses
in *(x,y). It does not exclude approximations to point targets
that produce large-magnitude narrow-base spikes in O(x,y).



ff*, Y y .(x,y) dx dy -0 (2-23a)

n

4,llxy) =.i.m. ,k Ik(x'y) (2-23b)S~~~n ---. co =
k-1

OD

2- (2-23c)
R k-l

ff*ax.Y Bk*(x,y) dxdy - ffqjj(xy) Sk*(xy) dxdy -k

R R (2-23d)

ff4*j xy) ek*(x,y) dxdy = 0 for each k (2-230)

R

and

II * il = II *,111 + 1,J-jl (2-23f)
where the double vertical bars are used to denote the norm or

integrated square of the function shown between the bars. If

the system of functions 8k(x,y) is complete over the region R,

then *Jl(x,y) = 0.

By substituting Eq. 2-23 into Eq. 2-18 and making use of

Eq. 2-230, we find that Ikj(x,y) makes no contribution to .any of

the k- Thus, from Eq. 2-21b, it follows that

ffh(t;x.y) *J(x,y) dx dy - 0 (2-24)
R

Con'sequently, the component 41(x,y), which will be referred to

as the ambiguous component of the scatterer density, does not

contribute anything to the radar return; and the most that we

can hope to determine from s(t) is the unambiguous component
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VII (x,y). The latter can indeed be determined by a radar

receiver which operates on s(t) with a weighting function

Wn(x,y;t) defined by

nn

W (xy;t)t) k(x,y) (2-25)Wn(yt T Ilk cPk* k

k=l

so that the result of the operation is

n0

n(x,y;t) s(t) dt = j k eklX'y) (2-26)

T k=l

where we have used Eq. 2-3, 2-9, and 2-22. In the limit as n

approaches infinity, we obtain the representation for Vll(x,y)

given by Eq. 2-23b.

Recall that K(t,tt) is a non-negative 'L2 kernel so that its

characteristic values A , and hence the p (see Eq. 2-12), may

819be arranged in a sequence of nonincreasing values with

increasing n. Consequently, if there is an infinite number of

P 's, the weighting function given by Eq. 2-25 does not tend ton

a limit as n-- co. However, the result of operating with this

weighting function (that is, Eq. 2-26) does have a limit in the

mean by Eq. 2-23b.

In the foregoing we have obtained a representation of

h(t;x,y) in terms of its characteristic functions yn(t) andI8n (xy) and its characteristic values pn" The scatterer density

has been decomposed into two orthogonal components V 11(x,y) and

I4L(x,y) such that the first is representable as a linear combina-

tion of the characteristic functions of h(t;x,y); whereas, the

second is not. Thus, the radar return, which was shown to con-

tain contributions only from the characteristic functions of
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h(t;x,y) carries no information about'NVL(xy). As a result,

only 'Vl(x,y) can be deduced from the radar return. For this

reason 'V11(x,y.) and 'V(x,y) are referred to, respectively, as

the unambiguous and the ambiguous components of the scatterer

density. If h(t;x,y) and the region R are such that the

characteristic functions 0n(x,y-) are complete, then, in the

absence of noise, a series representation for the total

scatterer densityY (x,y) can be deduced from the radar return.

The completeness condition may be restated in a number of

equivalent forms. 8 '9 However, there is no direct mathematical

test for explicitly establishing the completeness or incomplete-

ness of the en(x,y) for any h(t;x,y). Thus, the problem of

deducing 'V(x,y) from s(t) has been reduced to a well-known

mathematical problem.

The indexing of the characteristic functions 8 (x,y) is

arranged in order of nonincreasing •k or Ak which, in general,

can be assumed to correspond to increasing "wiggliness" of the

ek(x,y) as a function of x and/or y. Thus, high-order (high-k)

characteristic functions represent the sharp.features of Y,,(x.y);

whereas, low-order (low-k) characteristic functions represent

the d-c - like, or smooth, features of 'Y,(x,y).

The incompleteness of a set of characteristic functions

ek(xy) may be regarded as a deficiency of orthogonal functions

required for the representation of'•/(x,y). The set of missing

functions'can also be classified into high- and low-order

functions. Deficiencies of the first class result in an error

in the sharpness o.f, detail on the radar display (which can only

show N•/l(x,y) ), and deficiences of the second class result in

an error in the smooth features on the display.
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It is clear from Eq. 2-23 that ignorance of 4(x,y) will

also make it impossible to obtain a display of I.*(x,y)I. Quali-

tatively, the deficiencies in a display of 1*11(xy)[ are the

same a's the deficiencies in *11(xy) discussed above.

C. SMOOTHING AND ESTIMATION OF THE SCATTERER DENSITY IN THE

PRESENCE OF NOISE

In the presence of noise, which is assumed to be Gaussian,

stationary, white, and additive, it becomes impossible to make

an exact determination of *k 1 (x,y) or ] /,1 (xy)I-; much less,

of 4i(x,y) or jVi(x,y)'i. It will be shown that, under these

conditions, only an estimate of a smoothed form of 41i 1(x,y) can

be obtained. Such behavior is, to a certain extent, analogous

to that encountered in the problem of extracting an unknown

signal s(t) from a background of white, Gaussian, additive noise.

In order to obtain an undistorted replica of s(t), an infinite

bandwidth is required which, in turn, results in infinite noise

power. Therefore, a certain degree of smoothing and the result-

ing signal distortion is accepted in order to reduce the noise

power. The optimum smoothing operation (that is, one that mini-

mizes some measure of the total error caused by signal distortion
/ .

and noise) depends on the characteristics of s(t) and can be

determined only from a priori knowledge about s(t). Since such

information is not available for 4(x,y), we shall consider the

effect of a class of smoothing operations upon both signal, in

our case *(x.y), and noise.
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One example of a linear smoothing operation is given by:

Ws(xy) u ffs(x-x',y-y')W(x'.y') dx' dy' (2-27)
R

whereNYs(x,y) is the result of smoothing and S(x,y) has the form

of the right cylinder illustrated in Fig. la. The cross-section

area of the cylinder is a, the height is I/o, and the volume is

one. For such an S(x,y),NVs(x,y) in Eq. 2-27 is the average of

W(x,y) over the area or.

More generally IS(x,y)I may have any spike-like form, such

as the function illustrated in Fig. lb. The result of smoothing,

in this more general case, can be thought of as a weighted

average of V(x,y), if the volume under S(x,y) is set equal to one.

f S(x,y) dx dy 1 (2-28)

It is convenient to define the effective averaging area of a

general spike-like S(xy) as the cross section C' of a cylinder

that is equivalent to the spike in the sense that the volumes

under the squared magnitude of the two functions are equal. Thus,

1 (2-29)

ff IS(z,y)I dx dy

Of particular importance in the present context is the class of

smoothing functions for which (a) S(x,y) falls off rapidly'for

x and y .outside-an area 0 about x= 0, y= 0; and (b) a is much

smaller than the area of the region R. For such a smoothing,

function, the radar dieplay contains significant detail..



20

S_ , _ .. i .- I -; ..'

(a) (b)

Fig. 1 Examples of Smoothing Functions

i u __ .
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If we regard S(x-x' ,y-y') as a function of z' and y' with

..x. and y as parameters,, we can write

S(x-x',y;y') =.iPn(Xy) Bn(xO,y,) + S x,y;:zX0,Iy) (2-30)

n

where

Pn(xy) = ffS(x-x',y-y') en(x' ,yt) dx'dy' (2-30a)

R

and Sl(x,y;x',y'). is the component of $(x-x ,y-y') orthogonal to

all the functions n(X',y'),

ffSjX.y;z',,y,) 6. (x,,y') dx'dy' = 0 (2-30b)

R

Substitution of Eq. 2-30 into Eq. 2-27 and use of Eqs. 2-22, 2-23,

2-23b, and 2-30b yield

WV5(Xy) - -..YkPk(x,y) + ffs(xy;xl ,y' ) '.(X', ,y') dx'dy'
k R (2-31)

Since only the*'k's can be deduced from the received waveform

(even under noise-free conditions), the last term in Eq. 2-31

constitutes an ambiguous component ofNs (xy). One means of

obtaining unambiguous determination of Ns (x,y). in the noise-free

case, therefore, is to select a smoothing function and trans-

mitted waveform in such relationship to one another that

Sj(xy;x',y') is zero. In these circumstances,

Ys(x'y) = T-Yk P0(x'y) (2-31a)

k

The radar return from which'•s(x,y) is to be estimated is

given by: r(t) - 8(t) + n(t) (2-32)



22

where s(t) is the signal component, given by Eq. 2-3, and n(t)

is the noise component in the complex video representation. 4

Multiplying both sides of Eq. 2-32 by Yk*(t) and integrating

with respect to t over the interval T gives
rI " k + nk k , 2, 3,... (2-33)

where

rk fr(t) Yok*(t) dt (233a)

T

sk is given by Eq. 2-19, and

n = fn(t) •k*(t) dt (2-33b)

T

With the help of Eq. 2-22, Eq. 2-33 may be rewritten as follows:

rk = Pk*L k + nk (2-34)

10Equation 2-33b is to be interpreted as a stochastic integral

and nk," a random variable.

Since the skIs completely specify the signal component s(t)

(see Eq. 2-19); the rk's may be used as the "observables" or

"observable coordinates.,'' 4  Thus, the problem of estimating

V (x,y) from r(t) may be restated as a problem of estimating

Ys(x,y) from the rkIs.

It was assumed that the noise n(t) is stationary, white,

Gaussian noise of zero mean; let its spectral density be No.

With the help of Eq. 2-33b, we can evaluate the following

averages:
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"in n - J n(t) ne(t4) ck(t)(p*(t) dt dt'

STT

" " ff 0 8 (t-t') ((t) ,6*(t') dt dtI

TT

n . o f y ( ) c, t) d (2 -3 .5 )
T

where the horizontal bar denotes an ensemble average. Thus,

using Eq. 2-6, we obtain

No if k t
n nk * n iN (2-36)

0. if k Z

Since linear operations on Gaussian random processes result

4,10
in Gaussian random processes or variables, all the n k's are

jointly Gaussian random vaiiables with zero mean. Thus, for a

given set of * k 'S, the rk's as given by Eq. 2-34 are jointly

Gaussian random variables whose joint probability density will

be denoted by

Probability density = P(rlr 2,r 3,.../'' 1 k,*2,* 3 ,...) (2-37)

From Eqs. 2-34 and 2-37 and from the fact that the average value

of nk is zero, we conclude that the maximum-likelihood estimate

*k 0of *k is given by

V* ce =rk .- (2-38)4k

If S(x-x' ,y-y.') is nonsingular, that is. if, given 4fr5(x,y)

Eq. 2-30 is ,satisfied by a unique function *(x,y); and

furthermore. if S. (x,y;x' ,y' ) is zero, then a one-to-one

correspondence holds between sets of *k and functions
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',(x,y), as given by Eq. 2-31a. Under these circumstances the

maximum-likelihood estimate ofY s(x,y) is formally given by

jse(xy) - ZZN'ke Pk(x'y) (2-39)
k=l

where YVse(X,y) is the estimate of NY,(x,y). Using Eqs. 2-38, 2-34,

and 2-31a in Eq. 2-39 and redefining terms, we obtain

'se(x~y) =-Ys(x,y) + n(x,y) (2-40)

where n(x.y) is given by
0o

n(xi,y) = k PklX'y) (2-40a)
k=1

Thus, according to Eq. 2-40, the final output on the radar dis-

play consists of two components, one of which is the smoothed

scatterer density and the other is the noise. From Eqs. 2-40,

2-40a, 2-30a, and 2-27, it follows that

ffs(x-x, ,y-y')N(x' .y1) dx'dy'

R

+ -- , S(x-x' ,y-y' ) ek(X, ,y' ),.dx'dy
k1kk=1 R (2-41)

If S(x-x',y-y" ) is singular--that is, if knowledge of Ys(Xy)
s

does'not determineY(x,y) uniquelybut still Sj(xy;x ,y') is
zer--te et fy's cannot be deduced from Ys(x,y). Observe,

however, that: (1 an estimate Yse(X,y) is determined by Eq. 2-41,

whether or not S(x-x',y-y') is singular; and (2) as the input

noise decreases to zero, the n Is tend to zero andsy (X,y)

approachesJs(X~y), whether S(x-x',y-y') is singular or not. We
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therefore consider Eq. 2-41 to yield a reasonable estimate of

+,(xy) in the singular case.

If Sj(xy;x' ,yt) is not zero, the set of ek(x, ,y,) is not

complete; and for some *(x' ,y' ), 2(x' ,y') not only is not zero

but also is not orthogonal to Sj(x,y;x',y') for some (x,y). Py

Eq. 2-31, therefore, an ambiguous component of.*,(x,y) exists

even in the noise-free case. We, therefore, conclude that a

meaningful estimate (given by Eq. 2-41) can be obtained if,and

only if, the set of ek(x,y)'s is sufficiently complete so that

S(x-x',y-y') , regardless of whether it is singular or not, is

representable in the form of Eq. 2-30b.

The mean-square value of the noise at any point on the

display is given. by

"n(x,y)j2 = N0  2 (2-42)
k=l Pk

where we have made use of Eqs. 2-30a and 2-36 in Eq. 2-40a. If

we average the mean-square noise over the area of the display,

that is, the region R, we obtain the average mean-square noise

N " 12 0 k2
"NR "n(x-y dxdy 0 2-- (2-43)

R k1l

where P2 is the average value of IPk(X.y)12 ; namely,

=2 1 12 dxdy (2- 4 3a)

R

In applications in which Io,(x,y)I is a meaningful representa-

tion of the scatterer distribution (see Sect. A of this chapter),

the radar user may be primarily interested in the magnitude of
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NV (xy). U'nfortunately the relation 'between It(xy I and the

set of'k'S is not one-to-one so that a maximum-likelihood esti-

mate of IYs(x,y) cannot be made. We shall, therefore, use as

our estimate of the magnitude of Ys(x,y) the magnitude of the

estimate of Y (x,y)j namely Lvs.(x,Y)b.
3i

D. NOISE AND SMOOTHING

In this section a performance index which is an average-

signal-to-average-noise ratio is defined, and expressions for

this ratio are obtained in terms of useful system parameters.

The energy received from a unit point scatterer is given by

t'n a2
E~x~y) fJlh(t ;x,Y~ljd

E(xy) = dt (2-44)
T

which, in general, is a function of x and y. The average energy

over the region R is given by

E0 J JJ h(t;xy)I dtdxdy (2-45)

R T

where R is used to designate both the region occupied by

scatterers and its area.

It follows from Eqs. 2-17 and 2-45 that
OD

EoR = k (2-46)

k=1

Furthermore, if Sj(x,y;xt,y') = O, it follows from Eq. 2-3O.that

2 cD

ffjIS(x-x ,y-y' ) 12 dx'dy' T- . lPk(x,y) 12

R k=1
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for x and y inside R. Since the cross section of S(x,y) is much

smaller than the area R, we can rewrite the above expression as

follows: 2 d y

-0 k=l

where pk is given by Eq. 2-43a. Making use of Eq. 2-29, we

obtain
0o

Pk (2-47?)
k=1

It is convenient to define the following sets of normalized

quantities
2

Pk
(2-48)

n-1

and

P - __k (2-49)Pk 00 ln

n=1

Applying qs, .2-46 through 2-49 to Eq. 2-43 and redefining terms

gives
N O J 

( - 0
NR E•0 WR 12-50i

where O

j = a(-51)

k=l

Because O is much smaller than R, Ts (x,y) is negligible outside

R except in a region that (for regions R of reasonable shape) is

negligible relative to R. Thus, the average signal intensity
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ffI l(X.Y)I dx dy is very closely approximated by

R
OD

* fl x'y) dx.dy (2-52)
-OD

and the average-signal-to-average-noise ratio is

S (2-5.3)

R

Substituting Eq. 2-27 into Eq. 2-52 and interchanging orders

of integration gives

s j_ ff (f'V(xly,' )Ks (x,_x.,y'y")'R*(x,,,y.)dxldyldx~dy"
- • -oo(2-54)

where

Ks (x'-x",y'-yn) S(x-xI.Y-yt) x"xy-y" dxdy (2-54a)

-O

and where

{N(xY) " for (x,y) insideR
'YR 'X,y) ( 2-54b)

otherwise

Changing variables and integrating over x' and y' in Eq. 2-54

gives
00S-- ffK**(u~v). Ks(u,,v) du dv (2-5.5)

-00)

whe re,

K•,q,(u..v) - ff I,.y,) YR(x,-°,y,-v) dxdy, (2-55a)

which is the autocorrelation function of the scatterer density.

Two classes of scatterer densities for which explicit results

can be obtained are:
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I. the class of smooth scatterer densities--

all scatterer densities whose autocorrelation

function, K *0 uv), does not change apprecia-

bly over a region of size coentered at u 0

and v-0;

2.' the class of rough scatterer densities--

all scatterer densities whose autocorrelation
.function, K**(u,v), in the vicinity of u = 0

and v = 0 is substantially confined to a region

much smaller than a . (The behavior of K4 ou,v)

for u and v outside an area a about the origin

has negligible effect on S--see Eq. 2-55.)

If"we note that K (u,v) is a spike-like form whose crossss

section is approximately or(see Eq. 2-5 4 a) and if we use the sub-

scripts s and r to refer to the smooth and rough class, respec-

tively, then Eq. 2-55 becomes

00

Ss K.(O'O) K (uv) du dv (z-•6)

-GO

for smooth scatterer densities,.and

OD

5r =~~ (010) ff K*O ~u.v) dudv (2-57)

for rough scatterer*densities. With the help of Eqs. 2-28, 2-29,

2-54a, 2-55a, and 2-54b, Eqs. 2-56 and 2-57 may be rewritten as

follows:

S& dx* dy (2-38)
R

and

S = R f(xY) dx dj 2  (2-39)

R
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Substituting Eqs. 2-50, 2-58, and 2-59 into Eq. 2-53 and

redefining terms, we obtain for the smooth and rough scatterer

densities, respectively,

!E0 RO 2 (2-60)

N 0 J(2

and
E0 R2  2

N07 = O R~ 12 (2-61)

where 1Y1 2 is the average value of the squared scatterer density

and IT'J is the square of the average value of the scatterer

density; that is,

-- ~ff 'r=,,,J
IR

and

k '2 
12

1-1I I ffyf(x,y) dx dyl (2-63)y- I R

In order to provide a.n.interpretation for J in Eqs. 2-60

and 2-61, suppose,'for a moment, that all the "k's are equal for

I e k -• 1 and are zero otherwise. The sums in Eqs. 2-30, 2-48,

2-49, and 2-51 then are over, at most., M terms, and J is equal

to M--the number of normal modes contained in h(t;x,y). Next,

suppose that the values of the pkIs are approximately constant

for 1 !f k 'e M and decrease very rapidly for k > M. If ak has

any significant value for k > M, then J will be large and 7s and

i7r will be small (see Eqs. 2-60 and 2-61). As a result, the ak's

must be confined substantially to 1 e k e M. and then, J is again

approximately equal to M. Thus, in general, J may be interpreted

as the effective numbqr of modes that may be utilised without
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undue decrease in the average-signal-to-average-noise ratio.

Despite the infinite number of normal modes in h(t;x,y), the

number of modes that are usable to obtain Yse(xy) is finite

because the high-order modes contain little energy and are sub-

merged in noise.

If the smoothed scatterer density is to be an exact replica

of the actual scatterer density, then (a) S(x-x',y-y') must be a

two-dimensional impulse 8(x-x' ,y-y'); and (b) the scatterer

density \V(x,y) must contain no ambiguous component Yl(xY). In

order for condition (b) to obtain for all L2 functions '+'(xy),

the set of ek(x,y) must be complete. In this event the impulse

may be regarded as the limit approached by the sequence of

functions

--Z ek(x,y) ek*(X' , )

k=1

because for a complete set of 0 k(x,y)

R k=1

,..m. /x~lInl'~~)|*X .|d'Y'='•(x,y)

The corresponding sequence of J's. may be evaluated from Eq. 2-51,

giving n

" n n 1, 2, 3, goo

k=1

Since the Pk's are positive, J > _ or- For a
k np or > nJ

finite signal energy 309 the series

k-1

k-i



32

converges by Eq. 2-46. Hence, according to Eq. 2-49,.

00

n Pi

and the series

OD

n=l

must aiso converge. Since

I~n1n=l

diverges, we conclude that Jn must approach infinity with

increasing n. Hence, exact reproduction of an arbitrary

scatterer density Y(x,y) requires an infinite number of usable

modes.

In general, as the form of S(x,y) is adjusted to shrinka

toward zero in an effort to obtain fine resolution, if at the

same time ambiguities in the determination of\V (x,y) are

avoided, then J approaches infinity for any spike-like shape

S(x,y). By Eqs. 2-60 and 2-61, the average-signal-to-average-

noise ratios 7s and 77r each tend to zero in the process. We

conclude that the sharper the details of Y(x,y) that we attempt

to estimate, the lower the average-signal-to-average-noise ratios

become. As a result, the resolvable cell size cr must be chosen

to compromise between two requirements:

1. a must be sufficiently small to assure that the
essential details of \f(x,y) are not smeared out
in the smoothing process

2. O"must be sufficiently large to achieve a desired
signal-to-noise ratio
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X. THE RECEIVER

The input to the radar receiver is r(t), and the output

at the end of the observation interval T is a two-dimensional

display of ,*(x~y) (or I*..(x~y)I) From Eqs. 2-33a, 2-34,

2-30b, 2-40a, and 2-40, it follows that, if

k= Pk(X'y)

Ws(Xy;t) - Aiem. q •k(t) (2-64).
n,-- co Ikk

k-1

"for each x and y. then

fws(X,y;t) r(t) dt =*se(xy) (2-65)

T

Thus, the receiver is described by the linear operation.

fWs(x,y;t) r(t) dt

T

1if se(~y)is the desired output. As long as J is not infinite

and 0' is not zero, NR (see Eq. 2-50) is finite so that, as a
result of Eq. 2-43, In(x is finite almost everywhere in R.

Thus, comparing Eq. 2-64 with Eq. 2-42, we see that the right-

hand side of Eq. 2-64 converges in the mean as a function of

t, x, and y.

For any 8n(x~y) that is nearly constant over the averaging

region of the smoothing function S(x,y), Eq. 2-30a yields

Pn(Xy) ZS 8n(x,y). Thus., if the en(xy)'s are arranged in order

of decreasing smoothness, the leading terms in Eq. 2-64 will

resemble the corresponding terms for the noiseless-case receiver

given by Eq. 2-25. For a given -- (or jj*) and a lower bound

on tr (or is), Eqs. 2-60 and 2-61 indicate that the lower the
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input noise level N0 or the greater the signal energy E 0 , the

closer to an impulse can S(x,y) be made. Thus, as the input

noise level decreases, more and more of the terms in Eq. 2-64

will resemble terms of Eq. 2-25 for the noiseless-case receiver.

In order to relate the above results to the conventional

theory of point-scatterer detection by radar, we consider a point

target at (x 0 ,yo). The smoothed scatterer density is, by Eq. 2-27,

Yfs(X'y') = S(x-xoy-yo)

and the signal intensity on the radar display at the position of

the target is

k

where we have made use of Eq. 2-30. With the help of Eq. 2-42,

we obtain the signal-to-noise ratio at the position of the target

22

IY(oy)12 NO 1k kxy)1
I~ 0 N0O 2

kPk

Applying the Schwartz inequality to the numerator gives

I _(xoyo)l2 1 P 2 Z 12 = Ev)

In(xo ,0') 1 2 N0Z k k - 0

where we have also made use of Eqs. 2-44 and 2-17. The maximum

signal-to-noise ratio is achieved when

Pk(x 0 'Y0  -

Pk = C(xo0 yo) Pk ek(xo'Yo) (2-66)

where c(xoYO) is an arbitrary function of x0 and yo and is
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independent of k. Thus, according to Zqs. 2-64 and 2-66, the

receiver which maximiso$

''(x...y) 12

n(x0 .o 12
for all x0 and yo inside the region R is given by

n
V0 (xty;t) - c(x,y) £.i.m. T Pk ek(xy) qk*(t) (2-67)

n -- d cx k = I

where W0 (x,y;t) is used to designate the W (x,y;t) obtained when

Pk(xy) is given by Eq. 2-66. The resulting smoothing function,

which may'not have a spike-like form S(x-xz ,y-y') is given by

S(x,y;x' ,y') c(xy) k 2 k(xy) 0k*(XI ,y) (2-68)

k=1

Comparing Eqs. 2-67 and 2-68 with Eq. 2-17, we obtain.

V0 (x,y;t) = c(xy) h*(t;x,y)

and

S(x,y;xtyt) = c(xy) fh(t;x.y) h*(t;x',y') dt

T

Thus, aside from the multiplying function c(x,y), the receiver

reduces to the matched filter; the smoothing function reduces to

a generalized form of Woodward's uncertainty function; and the

output signal-to-noise power ratio reduces to the energy ratio

3(x,y)/N0 of conventional detection theory.



CHAPTER III

DELAY-DOPPLER RADAR THEORY

J A. THE SCATTERER-DENSITY MODEL

It is assumed in this chapter that x is time delay and y

is Doppler angular frequency. It is further assumed that, if

f(t) is the complex-video representation of the transmitted wave-

form, the radar return from a point scatterer at delay x and

Doppler angular frequency y may be expressed as

h(t;x,y) = f(t-x) e-jty (3-1)

As a result of the superposition of electromagnetic fields

in linear media, the radar return due to any transmitted wave

f(t) can always be represented by

Slt) OD g(x~t) f(t-x) dx (3-2)

-Co

where s(t) is the received waveform and g(x,t).is independent

of f(t) and depends only on the antenna, the scatterer distribu-

tion, and their relative positions and motion.

On physical grounds it may be assumed that g(x,t) is an

integrable-square function of time over any finite time interval

L. so that the integral

2(xry) - • fg(x.t *Jty dt .0-3)
L
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exists. Hence, by Fourier transform theory, we have

s(xt) - f o(xy) *-Jty dy (3-4)

-00

for t inside the interval L. Substituting Eq. 341- into Eq. 3-2

gives 0

O00

8() ff *(~)f(t-x) o"Jty dz dy(35

-OD

for t inside L. The interval L is assumed to be sufficiently

long so that any observation interval T of interest to the radar

user falls inside L and Eq. 3-5 is, therefore, valid for t inside

T. Equation 3-5 is the same as Eq. 2-3 if h(t;x,y) is defined by

Eq. 3-1. Clearly h(t;x,y) depends only on the radar; and by Eq.

3-3, 4f(x,y), like g(x,t), depends only on the scatterers and the

radar antenna. To eliminate dependence of *(z,y) on the radar,

we assume a priori that the scatterers are confined to a region

of uniform, unchanging antenna illumination. Thus, the condi-

tions required of the coordinates x and y in Chap. II, Sect. A,

are satisfied and determination of O(x,y) can be considered the

radar objective in a study of performance obtainable with differ-

ent transmitted waveforms and receiver processing functions.

Note that, in view of the choice of h(t;x,y) (-see Eq. 3-1) , it

is to be expected that, subject to the usual restrictions (such

as wide antenna beamwidth, narrow transmitter bandwidth, negli-

gible target acceleration), j#(x,y)j may be regarded as an

approximate map of the distribution of objects throughout the

X-Y plane.
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B. PROPERTIES OF TRANSMITTED WAVEFORMS

It is assumed in the remainder of this chapter that Y(X,y)

is known a priori to be zero for x outside an interval D, extend-

ing from x= xI to x =x 2. It will be shown that, in consequence,

certain classes of waveforms need not be considered in evaluat-

ing radar-performance possibilities.

0 Consider, for a moment, a nonperiodic transmitted waveform

f(t) in relation to the time scales for f(t) and s(t) in Fig. 2.

Since x is the minimum delay and x2 is the maximum delay, it

follows from Fig. 2 that any transmission outside the interval

T will make no contribution to s(t) inside the observationx

interval T (which for convenience is centered at t= 0). Thus,

the transmitted waveform could just as well have been a periodic

waveform of period T x It is therefore concluded that only

periodic transmitted waveforms need be considered.

Next, suppose that a periodic waveform of period P, which

is less than the length of the interval D, is used as the trans-

mitted waveform. Since f(t) =f(t+P), it is clear from Eq. 3-5

that any change in Y(x,y) coupled with the negative of that

change shifted by P along the x-axis, and such that both changes

are confined to D,will not affect the radar return. Hence, if

P < D, an ambiguous component of the scatterer density will

arise. Waveforms of period less than D are, therefore, of no

interest if unambiguous determination ofY(x,y) is desired. In

the following section we consider waveforms of period P = D.

Attempts to treat waveforms of period P > D have been unsuccess-

ful--it has not been possible to determine whether or not limita-

tions present for P - D can be alleviated for P>D.
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C. AMBIGUITIES OF RANGE-DOPPLER RADAR FOR P = D

In this section we consider transmitted waveforms of period

P equal to the length of the scatterer-occupied interval D. We

shall be interested in establishing conditions under which a

sufficiently complete set of 6k(x,y)'s can be obtained.

The class of waveforms under consideration can be represent-

ed by*

f(t) -- • fk ej2rkt/D (3-6)

k

where the fk are the Fourier coefficients, and D is the length

of the interval D. Furthermore, for t inside the observation

interval, we have
h(t;x~y) = .hklX,y) ej2rkt/T 1(3-7)

k

where

ij2-kt/Thk(x,y) = Jh(t;x'y) e- dt (3-8)

T

Also note that, without destroying any useful information in the

radar return, the observation time T can always be extended so

that

T = I = Positive integer (3-9)

From Eqs. 3-1, 3-6, 3-7, 3-8, and 3-9, it follows that

h(t;xy) " • f/, e-'j2w•'x/D sin[!I¶(-n) -I-n- yT/2T ej2rnt/T (3-10)

n. ir(It-n) - yT/2n,& I.

Equation 3-5 and 3-10 indicate that any component of the

sin(k• - YT/2)scatterer density which is orthogonal to k• - yT/2 for all

*Henceforth, it is understood that all summation indices runl
from -c to +co, unless otherwise indicated.



k will make no contribution to the radar returns. Hence, the

component that does contribute to the radar return must be

expressible as
S=) sinlkr - YT/2)VT(,.y k- -r/T yT/2 (-1

k

It has already been assumed that "f(x,y) = 0 outside an x

interval of length D. It is now assumed also that the samples

YT(x,2rk/T) are known a priori to be zero for k < k and k > k 2 .

For T >>D this assumption is often nearly equivalent to assuming

'f(xy) - 9 outside a band of Doppler angular frequencies y,

extending from yl = 2Vkl/T to Y2 = 2rkk2 /T. The width of this

band is given by

B =.y2 - Y, = 2P(k2 - kl)/T (3-12)

Equation 3-11 can, therefore, be rewritten as follows:
k 2

YT(XY = Z"•T(X,2rk/T) s in(krr,--T/2) (-3k= 'yT/2(3-13)

k=k 1

Henceforth, any scatterer density, whoselT(x,y) component can be

expressed as a finite series in the form of Eq. 3-13 with B

determined by Eq. 3-12 and which is zero for x outside D, will

be referred to as a BD scatterer density.

Observe that, in the absence of any additional a priori

information,YT(x,y) is the only component of the scatterer

density that can possibly be deduced from the radar. return. We,

therefore, wish to find the maximum value of B, if any, for

which, in the absence of noise,YT(xy) can be deduced from the

radar return. We also wish to determine what restrictions on

transmitted waveforms are needed to permit deducing ay T(x,y)

of maximum B.
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It Is convenient to define a set of coefficients

k ,fk/I when k/I is an integer

0 otherwise

and to rewrite Eq. 3-10 in the form

h(t;x,y) * h0 (t;xy) + hl'(t;x,y) (3-15)

where
k2

h0,Z~x n+m -j2I(n+m)x/ID sLnA.m-T/2) j2Trnt/T
h0 t; X,y) 5 i -rm-
ho gnm m- yT/2

nmk 1  (3-16)

and h (t;x,y) has the same form, but the index m runs over values

outside the (klk 2 ) interval. It follows from Eq. 3-13 that

f•T (x,y) h1 (t;xy) dy 0 (3-17)

Thus, hl(t;x,y) is of no concern to us since, for a BD scatterer

density, it makes no contribution to the radar return.

Equation 3-16 may be written

h0(t;xy) In n(t.) 0n*(X,y) (3-18)

n
-where

n+k 2

2 ;iD g2 (3-19)

ion+kI

k2

0ITL~n mn* j2TT(m+n)x/ID sin(lTm- T/y2) (3-20)
On(z~y) on g e~ (3-20)T

and
Yn (t) = 1 ej2Trnt/T (3-21)

Note that, if any o&n - 0 when calculated by Eq. 3-19, then the
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corresponding term is absent from series, Eq. 3-18, so that

there is no need to consider indeterminates in Eq. 3-20. With

the help of Eq. 3-14, it can be shown that

ffeM(x.Y) On*(x.y) dx dy - (3-22)
R if m n

where the region R is bounded by the interval D along the x-axis

and extends from -co to +oo along the y-axis. Thus, the 8n(x,y)

form an orthonormal set over R. Furthermore, the 9n(t) form a

complete orthonormal set over T.

By Eqs. 3-l.and 3-5, the discussion'above Eq. 3-11, Eq. 3-17,

and because 'YT(x y) - 0 for x outside D, we have

s(t)*n f f'vT X.Y) h 0 (t;x,y) dx dy (3-23)

D -co

for t inside T. Equations 3-23 and 3-18 are analogous to the

basic equations of the general theory (Eqs. 2-3 and 2-17). The

only change is that the function YT(xy), instead of being

identically zero outside an interval B (to yield a finite region

R), is a sin x/x interpolation of samples spaced at intervals

2T/T along y; and the sample values are zero outside B. The

properties of orthonormal expansions obtain,as in the general

theory (see Eqs. 2-22 through 2-23P); thereforeYTV(xy) is the

sum of a component 'K11(x,y) expressible as a linear combination

of the 6n(xy) and an ambiguous component Y.f(x,y) that makes no

contribution to s(t) and, hence, cannot be determined by the

radar. The necessary and-sufficient condition for unambiguous

determination of * T(xy) is therefore that *T(xy) is known

Lpriorl to be a linear combination of the B (X,y). We,
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therefore, wish to determine the maximum value of 3 for which

the TT(x,y) component of any BD scatterer density can be expand-

ed in terms of 8n(xy).

It is convenient to express each of the samples Y(x,2Trk/T)

in Eq. 3-13 as a Fourier series over the interval D. Hence,

k 2

m nk 1

where

u(xY) 8,j2imx/D sin nn-YT 2 (3-25)
Umn(x,y, = nr - yT/2

and where the Y/mn are the appropriate Fourier coefficients. In

order to be able to expand VT(x~y) as a linear combination of

the 8k (xy), it is necessary and sufficient that each of the

orthogonal functions umn(x,y) be representable as a linear super-

position of the ek(xy); that is, it is necessary and sufficient

that

hereUmn (X,y) = Zuk(mn) ek(x,y) (3-26)

where

umk (mn= ffu mn(x.y) Bk*(x,y) dx dy (3-26a)

R

for all m and for k n - k2.

Substituting Eq. 3-26a into Eq. 3-26 and making use of Eqs.

3-25, 3-20, and 3-I4, we find that it is necessary and suffi-

cient that

k 2

m (x * 1J2T(Im+4-n)x/ID sin,(l - yT/2)
Umn - 2 Z gm-n+A "' - yT/2

"•Im-n t=k 1(3-27)

Thus, if Eq. 3-26 is to be a correct representation for mn(xy)
mnI
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as given by Eq. 3-25, it is necessary and sufficient that

2", 1 when 1, =n
2nD (3-28)

gIm gIm+1-n for 9 n, k dZ -k 2•Im-n1 2

for each m and for k 1  n dk 2. Implied in Eq. 3-28 is that for

no k can - 0. Observe that, if any Pk.= 0, then the corres-

ponding term would be missing from Eq. 3-26 and the right-hand

member of Eq. 3-27 would be zero for the corresponding value of

Im-n so that Eq. 3-27 could not be satisfied.

The above necessary and sufficient conditions can be

restated as follows:

" - for each m and k1 " k k 2  (3-29)

and
*

Im+1-n 0 for each., k 1  • 2 , k 1 En•k 2 , 2 n
(3-30)

If we lot k = I n. Eq. 3-28 becomes

gIm g9mk 0 for each m, -(k2-kldk d (k2-kl k• 0

(3-31)

Equation 3-29 requires that, for all m, gm # 0. Therefore,

referring to Eq. 3-31, we conclude that, in order to satisfy

Eqs. 3-29 and 3-31, it is necessary that

k - k < 1 (3-32)

which, with the help of Eqs. 3-9. and 3-12, Eq. 3-32 may be

restated as follows:

BD < 2r (3-33)

The maximum value of k2 -k 1 , which satisfies Eq. 3-32 is

given by
k2 - kl 0 z -34),



46

which value of k 2 - k represents the worst possibility--if an

_adequate set of en (x,y) can be achieved for k2 -kI = -1, then

it can also be achieved if fewer samplesVT(x,21Tk/T) are permit-

ted by a Priori knowledge to differ from zero. Equation 3-34

implies that, for any integer n, a unique integer p can be found

such that

qn6k I n + k (3-35)I1 p 2
Applying Eq. 3-35 to Eq. 3-19 and making use of Eq. 3-14, we

find that

2n =2rD for Ip - k2 n-I - k1 (3-36)

In other words for every transmitted harmonic fp, there are

k - kI + 1 = I equal characteristic values pn; and since no

fp = 0, then, for every n, p.n 0. From Eqs. 3-36 and 3-14, it

follows that Eq. 3-29 is satisfied. Also, as a result of Eq.

3-34, Eq. 3-30 is satisfied. Thus, we are assured that, if

(a) for all p, fp ý 0; and (b) Eq. 3-33 holds, the set of Gn(x,y)

is sufficient to expand theNK T(x,y) component of a BD scatterer

density, and unambiguous determination of NKT(xy) is possible.'

The set of e (x,y) is obtained by using Eq. 3-35, together withni
Eq. 3-14 in Eq. 3-20. Hence,

T .__f e j2rpx/D sin - yT/2n 1?TD f "1 T(I p_n) -yT/2
(3-3?)

for Ip - k2 n-I - k

so that, for every transmitted harmonic fp, there are
k 2 - kI + 1 = I characteristic functions 8(xy)".

For a transmitted wave of period P = D, we have, therefore,

shown that, in order to obtain unambiguous determination of
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VT(x,y) for a BD scatterer density, it is necessary and suffi-

cient that

(a) the transmitted wave contains all its, harmonics

(no fk - 0)

(b) k2 - k 1 < I, or BD < 2r -- that is, the scatterer

density Must be such that the samples.*T(x,2rk/T)

are zero for k < kI and k > k 2

It is interesting to note that condition b corresponds to

the well-known limitation on maximum unambiguous delay and maxi-

mum unambiguous Doppler frequency encountered in periodic pulse

radar systems.

D. NOISE AND SMOOTHING

It is assumed in this section that Eq. 3-33 is satisfied,

that the period of the transmitted waveform is equal to D, and.

that all harmonics are present. Thus, we are assured that there

is no ambiguous component of *T(xy). In analogy to Sect. D of

Chapter II, a performance index which is an average-signal-to-

average-noise ratio will be defined. Expressions for this ratio

will be obtained in terms of useful system parameters.

Suppose that a smoothing operator of the following form is

chosen

S(x,y) = a(x) b(y) (3-38)

where both a(x) and bjy) could be some pulse-like forms centered

at x = 0 and y = 0, respectively. The width of a(x) is much

smaller than D, and the width of b(y) is much smaller than B.

We can, therefore, write
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aCx) a ak ej2wkx/D 3-39)

k

In order to assure that S(x-x',y-y') is expressible in terms of

the n (X,y) (see Chap. II, Sect. C) , it is necessary to assume

that the Fourier transform of b(y) is zero outside an interval

T. Hence,
OD

T -sin uT/2
2r b(y-u) UT/2 du - b(y) (3-40)

-,/

To apply the theory of Chap. II, Sect. C, we note that, in

analogy to Eq. 2-30a, we have

OR

Pn(x~y) = f f S(x-x',y-y') en(x',y') dx'dy' (3-41)
D - c

Thus, using Eqs. 3-38, 3-39, and 3-40 in Eq. 3-41 gives
f

P (xy) a j'2'pD b jy-2r(I *n3DnT I aP1 p I ' P(3-42)

for I -k n- Ip- k
p 2 .p 1

Furthermore, by analogy to Eq. 2-42 and with the help of Eqs.

3-40, 3-42, and 3-36, we obtain

ln(X.y)I2 " T f lb(y -2rm/T) (3-43)
in-k1

The assumption resulting in Eq. 3-40 also yields

b(y-u) = ?(,y- 2rm/T) Sin(m -,uT/2)(n' - uT/I
In

so that

rlb(y-u)1 2 du T 7I jb(y-2ITm/T)l 2fa T
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Comparing this expression with Eq. 3-43, we obtain

d R (3-45)
where

NL f- a 2
NR 2wf fb(Y)I dy (3-46)

p -00

Since b(y) is a narrow spike, much narrower than B, we see that,

for y inside B, and not too near the edge of B, we have approxi-

mately,

Furthermore, for y. appreciably outside B, I"n(x,y)1 2 is nearly

zero.

The quantity NR, given by Eq. 3-46, cannot be defined the

same way as in the general theory (see Eq. 2-43) because the

region R in this chapter is infinite. It is interesting, though,

that
cO

B J J n(x ,y)1 2 dx dy

D -CO

leads exactly to NR above; and to that extent, BD is the "effective"

area of R and NR is the "effective" average of the mean-square noise.

Because the region R considered here is infinite, the'average

signal intensity also cannot be defined as in Chap. II (see Eq. 2-52).

Nonetheless, the average-signal-to-average-noise ratio calculated

from Eqs. 2-42, 2-52, and 2-53,

JJfly (x,y) I dx dy

(3-48)

ffJn(x,y)J2 dx dy
R
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exists inasmuch as the factor 1/R is cancelled in the ratio.

By a procedure similar to the one used in obtaining Eq. 2-57,

we find that, for a rough scatterer density

ff nu. d dxdy K (0,0) ffJJKVuv) dudv

which, with the help of Eqs. 2-54a and 2-55a, becomes

ff Nvx,y)!2 dxdy = fIs(x'y)12 dxdy Iff*(x,y) dxdyl2
OD OD- R (3-49)

A similar relation can be obtained for the smooth case; but we

shall confine our attention to the rough case, which appears to

be of greater physical significance. It follows from Eqs. 3-43,

3-9, 3-38, and 3-49 that Eq. 3-48 can be written as

00

fla(x)j 2 dx

2- 1ff'(x,y) dxdy (3-50)
"N0 T- Iaplfpl R

p

It is interesting to define the number of useful modes, a

quantity analogous to J given by Eq..2-51 in the general theory.

The normalized quantities ak and Pk can be defined as in Eqs.

2-48 and 2-49, except that pk 2 in Eq. 2-48 cannot be defined for

an infinite region. However, only the ratio of

Pk 2 to p

h

is needed; hence, we define
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ffIPk(X.y) dxdy

= 1ff Ipk('Y)I 2 dd
R

ff I Pnxy

n R

Making use of Eqs. 2-49, 2451, 3-36, 3-39, 3-42 and the above

definition, we obtain

J -I 
( 

0 
-I n 1

k

where P 0 is the average transmitted power given by

0 , I fn12 3-6(-52

n •

Note that, as a result of Eqs..3-1, 3-6, 3-9, and 3-52., we

can write

BD dt dx dy - P 0 T

regardless of the length of the interval B. Comparing the above

result with Eq. 2-49, we have

E0 = Po T (3-53)

With the help of Zq9. 3-51, 3-53,'and 3-39, we oan rewrite Eq. 3-50

as follows:

"I? - I ffj (x,y) dx dy(3-54)

R

which, if we take into account Eq. 2-63, agrees with Eq. 2-61.
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3. SYNTHESIS OF THE TRANSMITTED WAVEFORM

In this section we obtain transmitted-waveform requirements

which, for a given transmitted average power and the smoothing

function specified by Eq. 3-38, yield the maximum output signal-

to-noise ratio.

As long as the f 's are different from zero, the smoothed
p

scatterer density is(x,y) is independent of the f Is so that we

can choose a set of fp's to minimize In(x,y)12 , as given by
p

Eq. 3-43 without affecting the signal intensity. Thus, the set

of f p's which minimizes ln(xy)i' also maximizes both the average-

signal-to-average-noise ratio as well as the local signal-to-noise

ratio I*,(xy)l 2/n(xy)2

It is clear from Eq. 3-43 that the larger the f's the

smaller [n(xy)2 However, since the average transmitted power

P0 must remain finite, we need to impose Eq. 3-52 as a constraint.I0
Applying the method of Lagrange's multipliers, we minimize Eq. 3-43

under the constraint imposed by Eq. 3-52. The result is

P0

12 = (3-5.5)

I k

Thus, once the smoothing operator has been selected, the optimum

distribution of transmitted power throughout the spectrum is

determined by Eq. 3-55. The phase angles of the fn's are arbi-

trary so that it might be possible, in principle, to minimize

the peak power requirements by adjusting the phases.

If a(x) is a realizable autocorrelation function, and if

the optimum transmitted waveform is used, then E-. 3-•1 yeLdS
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a2 (
J T a(3-)6)

f Ja( 2) dx
-00

where we have also made use of Eqs. 3-39 and 3-55. The factor

ja(x)2 dx/a 2 (0) is a measure of the width of a(x) or a

measure of the reciprocal bandwidth of the spectrum of a(x).

However, by Eq. 3-55, a(x) is the autocorrelation function of

the transmitted wave so that a (0)/f Ja(x)1 2 dx is a (somewhat

unusual) measure of the bandwidth of the transmitted wave; and,

in this special case, J reduces to a radar time-bandwidth product.

The average-signal-to-average-noise ratio for the optimum

transmitted waveform is given by Eq. 3-54 with J evaluated as

the time-bandwidth product of Eq. 3-56.

F. THE PROCESSING OF THE RADAR RETURN

The receiver weighting function corresponding to the choice

of smoothing function given by Eq. 3-38 is obtained in the same

way as in the general theory (Chap. II, Sect. F). Equation 2-61

results, except that the summation index now runs from -oo to

+oo. Substituting Eqs. 3-21, 3-36, and 3-41 into Eq. 2-64, we

obtain

W XYt)- b[y-2TT(Ip-n)/Te2tT
p p nuIIkpn=I p-k 2 ( 3-5 7)

Substituting m for Ip-amaking use of Sq. 3-9, and rearranging

terms gives



Xy;t) [z E m=kl T
1Vs( ,mtt).] 2 1b(y.21m/T)(3-58)

It is convenient to define the Fourier transform of b(y)

B(t) f0 b(u) *-Jut du (3-59)

from vhich it follows that
CO

B(t) e0ty. f b(y-v) *Jvt dv (3-60)
-00~

Making use of Eq. 3-44 in Eq. 3-60, we obtain

Sejtyr= 211 j211mt/T

B(t) -Yr b(y-2m/T) e (3-61)

m

for t inside the interval T. If we recall that the width of the

spike-like form b(y) is much narrower than B, we see that, for y

inside B, and not too near the edge of B, Eq. 3-61 may be approxi-

mately rewritten as follows
k 2

B(t) 9 - = &_ b(y-21m/T) ej2hfmt/T (3-62)

m=kI

Using Eq. 3-62 in Eq. 3-58 gives

V (xy;t) = e-j2rp(t-x)/D B(t) e-jyt (3-63)

p p

Suppose that the spike-like form a(x) is a realizable auto-

correlation function so that all the a are positive. Then, if

the optimum transmitted waveform, specified by Eq. 3-55, is used

in Eq. 3-63

Ws(X,y;t) . a(0) B(t) f*(t-x) e (3-64)
2P + 0
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where we have also made use of Eq. 3-39 and Eq. 3-6. If B(t)

is constant throughout T, so that b(y) specifies only the

unavoidable smoothing associated with a finite observation

interval, the weighting function in Eq. 3-60 it the matched

filter of conventional radar theory.

G. APPLICATION TO THE MAPPING OF THE LUNAR SURFACE

An interesting application of radar to dense-scatterer

distributions is encountered in the problem of radar mapping of

the lunar surface in range and range-rate (or delay and Doppler-

frequency) coordinates. Such a mapping has been carried out by
11

the Millstone Radar.

Of importance to this mapping is the libration of the moon--

an apparent angular vibration of the moon as viewed by an observ-

er on the earth. The major component of libration arises in the

following manner: The same hemisphere of the moon is continually

pointing toward the center of the earth. Thus, an observer on

the surface of the earth sees slightly different portions of the

moon as the earth rotates to place the moon in. different posi-

tions above the observer's horizon. As a result of this effect,

the moon appears to rotate on its own axis through a small angle

when viewed from a point on the earth's surface. Different

points on the surface of the moon will, therefore, have differ-

ent range rates. Thus, a time-delay and a Doppler-frequency

coordinate, together with a scatterer density *(x,y), may be

assigned to each point on the surface of the moon.

____________________________________________
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In the Millstone experiment an estimate of lqj(x,y)I 2, where

x is time delay and y is Doppler frequency, was obtained. The

estimate may be assumed to differ from a physical map of the lunar

surface for reasons pointed out in Chap. II, Sect. A. Furthermore,

aside from equipment limitations, noise and smoothing will give

rise to errors, as discussed in Chap. II, Sects. C and D; and

Chap. III, Sect. D.

In the following we apply the theory developed in the pre-,

ceeding sections to obtain the optimum waveform, and receiver

weighting function appropriate for mapping the lunar surface with

a radar of the same carrier frequency (440 Mc) and limit on.

observation time (Tmax = 9 sec), as were reported for the

Millstone experiment. The observation-time limit is set by r-f

oscillator stability. From the Millstone data11 it is clear

that the scatterers on the moon's surface are confined to a

range interval equal to the moon radius, which corresponds to a

delay time or x interval of 23 msec. Furthermore, the scatterers

are confined to a range-rate interval, at maximum libration rate,

that corresponds, at 440 Mc carrier frequency, to a Doppler fre-

quency or y interval of about 76 rad per sec. Consequently, the

samples *(x,2rk/T) may be expected to be zero, or very nearly

zero, for x outside D 0'23 msec;and for 2Trk/Toutside B = 76 rad

per sec. Thus, a BD scatterer density is at least approximated;

and BD = 1.7 < 2r., Observe that, as long as BD < 2TT, the theory

of Chap. II, Sects. D, E, and F, is applicable; and the period P

may have any value D < P < 2r/B or 23 msec < P < 83 msec. A

period of 30 mseo was used in the Millstone experiment.
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Suppose that a(x), the function that specifies the smoothing

in time delay, is chosen to be a triangular pulse, as shown in

Fig. 3 where 8 is the width at the half-amplitude points. The

function b(y) that specifies the smoothing along the Doppler-

frequency axis must be chosen so that its Fourier transform is

confined to the interval T. A suitable spike-like form for b(y)

is

b(y) = sin vT/2yT/2 (-5

and for this choice of b(y), the attainable y-axis resolution is

limited to that obtaining for T = Tmax

Having chosen the smoothing functions, we shall apply

directly the theory in Sects. E and F to obtain, for any specific

P, 8, and T, the optimum transmitted waveform and the correspond-

ing receiver weighting function. We shall also investigate the

effect of changes in P, 8, and T on the radar performance.

From Fig. 3 and Eq. 3-55, we see that the If n[2 of the

optimum transmitted waveform must follow a (sin x/x)2 envelope

such that the time autocorrelation of f(t) is a periodic string

of triangular pulses of the form shown in Fig. 3- Since the

phases of the transmitted harmonics fn are arbitrary, the above

condition can be satisfied by a wide class of transmitted wave-

forms, among which is the periodic train of rectangular pulses

of width 8 and period P. The relative simplicity of the trans-

mitter and the receiver are important advantages of the periodic

pulse waveform. However, other waveforms, whose fn have differ-_.......

ent phase angles, may result in lower peak power requirements

If the conditions of the theory can be met in the construction
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of the transmitter and receiver. The waveform actually used in

the Millstone experiment was an approximately rectangular pulse

train with a pulse width 8 = 500 psec and a period P = 30 msec.

It follows from Eqs. 3-39, 3-65, and 3-64 that the appro-

priate receiver is a matched filter with an integration time

equal to T. For T = T = 9 sec, such a receiver correspondsmax

very closely to the digital data-processing scheme used in the

Millstone experiment.

Thus, if the same smoothing is to be obtained as in the

Millstone experiment, the optimum transmitted waveform (aside

from the possibility of altering the phases of the transmitted

harmonics as discussed above) and the corresponding receiver

weighting function obtained on the basis of the dense-scatterer

theory ari in agreement with the waveform used in the Millstone

experiment.

Assuming that O(x,y) is a rough scatteier density, we see

from Eqs. 3-54, 3-53, and 3-56 that, for a given average power,

the average-signal-to-average-noise ratio is independent of the

duration of the observation interval T and the smoothing in

Doppler frequency b(y). Thus, Doppler-frequency resolution can

be increased without cost in signal-to-noise ratio by increasing

T from any small value to the allowable maximum. The interval

T = 9 sec used in the Millstone experiment may thus be con-
max

sidered optimum in view of the equipment limitations. In con-

trast, as the width of the smoothing function a(x) decreases,

the average-signal-to-average-noise ratio decreases. The choice

of 8 = 500 psec in the Millstone experiment is thus a compromise

between the greater resolution a shorter pulse would provide and
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the cost in signal-to-noise ratio (for fixed average transmitted

power).

As long as D < P < 2n/B, we note that: (1) the samples j
I(x,2Trk/T) are zero outside an interval smaller than 217/P along

the y-axis,and 4(x,y) is zero outside an interval smaller than

P along the x-axis; and that (2) the set of On(xy) is complete

(assuming fn ý 0 for all n) for x inside an interval of length P

and for samples at y = 2Tk/T inside an interval of length 217/P.

Therefore, if the lunar surface is characterizable by a rough

scatterer density, Eq. 3-54 applies. As a result, the average-

signal-to-average-noise ratio is independent of the period P for

D < P < 2n/B. Furthermore, the resolution is also independent

I of P for D < P < 2w/B.

I!



CHAPTER IV

A. GENERAL THEORY

There are two basic limitations on radar performance in

dense-scatterer applications:

1. The incompleteness of the set of characteristic func-

tions en(xy). This incompleteness results in an ambiguous

component of the scatterer density, *j(x,y), which makes no

contribution to the radar return and hence, even in the absence

of noise, cannot be deduced from the received waveform. Only

the unambiguous component, *,[(x,y), can be uniquely determined

from the noise-free radar return.

2. In the presence of additive, stationary, white, Gaussian

noise, only an estimate of a smoothed form of O(x,y) can be

obtained and, then, only if the desired smoothing function is

expandable in terms of the en(x,y). As the degree of smoothing

is increased, the signal-to-noise ratio on the radar display

increases; but the sharp details of (x,y) (orl I(xY)I) are

smoothed out. Any radar design must be a compromise between a

loss of detail in excess of that resulting from the incomplete-

noss of the On (z,y) and the signal-to-noise ratio on the display.
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B, DELAY-DOPPLER THEORY

Time delay and Doppler frequency constitute a pair of

coordinates for which a scatterer-density function can be defined

so that its determination or estimation may be taken as the

objective of the radar system.

If all the time delays are known a priori to be confined to

a finite interval D, and if the observation time is confined to

a finite interval, then:

1. Only periodic waveforms need be considered as possible

transmitted waveforms.

2. A transmitted waveform of perioi P less than D will

give rise to an ambiguous component of the scatterer

density.

3O Only the %kT(x,y) component of the scatterer density,

that is, the component that can be expressed as a

sin x/x interpolation of samples spaced at intervals

2r/T along y (see Eq. 3-11), contributes to the radar

return.

If a periodic transmitted waveform of period P equal to D

is used, and if it is known a priori that the samples of *I(x,y)

at intervals 2r/T along y are zero for y outside an interval B,

then *,¶(x,y) can be deduced unambiguously from the noise-free

radar return if, and only if,.

1. BD < 2r

2. All harmonics of the transmitted waveform are different

from zero.

If the foregoing conditions are satisfied and if a(x),

specifying the smoothing along the x-axis, is a realizable auto-

correlation function, then, for a given transmitted average power
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the output signal-to-noise ratio is a maximum when the time

autocorrelation function of the transmitted waveform is a

periodic string of pulses of the form of a(x). The receiver

weighting function appropriate for such a waveform resembles

closely the matchod filter.
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